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Chapter 3 

The Evans-Searles Fluctuation Theorem 

Hence the Second Law of thermodynamics is continually being violated 
and that to a considerable extent in any sufficiently small group of 
molecules belonging to any real body.  As the number of molecules in 
the group is increased, the deviations from the mean of the whole 
become smaller and less frequent; and when the number is increased 
till the group includes a sensible portion of the body, the probability of a 
measurable variation from the mean occurring in a finite number of 
years becomes so small that it may be regarded as practically an 
impossibility. 
 
J.C. Maxwell, Nature, 17, 278 (1878) (our italics) 
 

3.1 The Transient Fluctuation Theorem 

 The first proof (1994) of any fluctuation theorem was for a special case of 

what is now known as the Evans-Searles Transient Fluctuation Theorm (ESFT).  Here 

we give a very general proof. Consider the response of a system, initially in some 

known but arbitrary ditribution, 

 

 

 

f (Γ,0) = exp[−F(Γ)]
dΓ

D
∫ exp[−F(Γ)]

,  (3.1.1) 

 

where F(Γ)  is some arbitrary single valued real function for which 

f (Γ,0) = f (MTΓ,0)  (i.e. the initial distribution is an even function of the momenta), 

defined over some specified phase space domain D.  Γ  is the extended phase space 

vector which includes the phase space vector and may include additional dynamical 

variables such as the volume or the thermostat multiplier associated with a possible 

Nosé-Hoover thermostat. 

 Consider any system whose dynamics is described by continuous, 

deterministic, time-reversible equations of motion.  The equations of motion may 

have an applied dissipative field or the field may be zero.  If the field is zero then in 
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order to see anything interesting, the initial distribution should not be preserved by the 

equations of motion (if it is preserved, then the ESFT is completely trivial).  On the 

other hand if a dissipative field is applied then it is frequently useful to consider the 

case where the initial distribution is the equilibrium distribution for the field free 

dynamics.  

 We assume the unthermostatted equations of motion satisfy the AIΓ  

condition.  A thermostat may be added (as in (2.2.5), for example), but again this is 

not absolutely essential.  The equations of motion must however be time reversal 

symmetric.   

 

Definition: 

 The time averaged dissipation  Ωt (Γ)  along a trajectory originating at phase 

 Γ  and averaged for a time t, is defined as [12,13]: 

 

 

 

ds Ω(SsΓ
0

t

∫ ) ≡ ln f (Γ;0)
f (MTStΓ;0)

⎛
⎝⎜

⎞
⎠⎟
− Λ(SsΓ)ds

0

t

∫

≡ Ωt (Γ)t ≡ Ωt (Γ)
 (3.1.2) 

  

It is useful to define  Γ
∗ ≡MTStΓ . From (2.1.9) we know that this phase space vector 

is the origin of the conjugate anti trajectory to that trajectory starting at  Γ . Going 

forward in time with the natural propagator from  Γ*  is like going backards in time 

from  StΓ  except that the velocities are reversed – see (2.1.9).   
    
Definition:  

A system is said to be ergodically consistent over a phase space domain D, if  

 

 

 

∀Γ∈D, st f (Γ;0) ≠ 0,

MTStΓ∈D, and f (MTStΓ;0) ≠ 0,∀t
 (3.1.3) 

 

In order for the dissipation function to be well defined over the phase space domain D 

the system must be ergodically consistent over D.  There are systems that fail to 
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satisfy this condition.  For example, if we let the initial distribution be microcanonical 

and if the dynamics does not preserve the energy (there may be a dissipative field but 

no ergostat etc), then ergodic consistency obviously breaks down.  

 Ergodic consistency also implies that for almost all trajectories that start at a 

phase vector  Γ  inside the domain D, the conjugate antitrajectory which starts at 

 MTStΓ  is also inside D. We say “almost all” because if there is a zero measure set of 

trajectories that have missing antitrajectories, this will not violate (3.1.3). Ergodic 

consistency is concerned with phase space density not with zero measure objects (e.g. 

individual phase space trajectories). As mentioned in Chapter 1, almost all 

Loschmidt’s antitrajectories exist in the initial distribution of states. 

 Physicists usually down play the importance of specifying the phase space 

domain but this specification can be very important. If N-particles are physically 

constrained to be located in a physical region (by impenetrable walls or so) then the 

specification of the domain can be very important. 

 We can re-write the definition of the dissipation function so that it directly 

gives the ratio of the probabilities, p , at time zero, of observing sets of phase space 

trajectories originating inside infinitesmal volumes of phase space δVΓ  and 

δVΓ (Γ
*) ≡ δVΓ (M

TStΓ)  

 

 

 

p(δVΓ(Γ,0)
p(δVΓ(Γ

*,0)
= f (Γ;0)δVΓ(Γ)
f (Γ*;0)δVΓ(Γ

*)

→
δVΓ→0 f (Γ;0)

f (Γ*;0)
exp − ds

0

t

∫ Λ(SsΓ)⎡
⎣⎢

⎤
⎦⎥

= exp Ωt (Γ)t⎡⎣ ⎤⎦

  (3.1.4) 

 

We have also used (2.4.11) for  δVΓ(Γ) δVΓ (S
tΓ)  together with the observation that 

the Jacobian for the time reversal map is unity  δVΓ (M
TΓ*) δVΓ(Γ

*) = 1 . The third 

line follows by a trivial use of the definition of (3.1.2).   

 In all the work in this book we will assume that the initial distribution is 

invariant under the time reversal mapping, MT  and  f (M
TΓ;0) = f (Γ;0) .   
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 Thus the dissipation function gives the logarithm of the probability ratio of 

observing at time zero, an infinitesimal set of trajectories relative to the conjugate set 

of anti-trajectories. Thus one way to think of the dissipation function is as a measure 

of the temporal asymmetry inherent in sets of trajectories originating from an initial 

distribution of states.  As we will see the dissipation function has an eclectic set of 

properties. 

 What is not so obvious is that this definition of the time averaged dissipation 

function even applies to some non-autonomous systems. If a time dependent external 

field has a definite parity under time reversal the conjugate sets of trajectories and 

anti-trajectories still exist and the time averaged dissipation can still be calculated 

using (3.1.4). 

 We have not said anything about how we could choose, δVΓ . Now suppose 

we choose the volume element δVΓ  to be that set of volume elements in D, within 

which all trajectories originating at time zero from within that volume have the time 

integrated dissipation function, Ωt (Γ) = (A ±δA) . Then we have 

 

 

 

lim
δA→0

p(δVΓ (Γ,0))
p(δVΓ (Γ

*,0))
= lim

δA→0

f (Γ;0)δVΓ (Γ)
f (Γ*;0)δVΓ (Γ

*)

= exp[Ωt (Γ)t]

= exp[At]

 (3.1.5) 

 

Using the time reversal symmetry of the equations of motion, all trajectories 

originating within δV
Γ*

 must have the property that Ωt (Γ
*) = −(A ± dA)t  and 

therefore we see that:  

 

 p(Ωt = A)
p(Ωt = −A)

= exp[At],
 

(3.1.6) 

 

This is the Evans-Searles Transient Fluctuation Theorem (ESFT).  

 It is clearly asymmetric in time.  The integrated dissipation function itself is 

odd under time reversal.  In (3.1.6) if A is positive then (3.1.6) says it is exponentially 
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more likely to observe positive rather than negative dissipation.  If on the other hand 

A is negative, then it is exponentially more unlikely to observe negative rather than 

positive dissipation.  Regardless of the sign of A, the implication is the same.  

Positive dissipation is more likely than its complementary negative counterpart. 

 What is not so obvious is that for a given system there may be multiple 

noncontiguous phase space subvolumes which each have a time averaged dissipation 

equal to A±dA. However because the system is ergodically consistent every such 

subvolume has its own conjugate phase space subvolume that contains the phase 

space vectors for the time reversed conjugate antitrajectories. Every such subvolume 

has a time averaged dissipation of -A±dA. 

 

We need to stress again the conditions required for the validity of (3.1.6): 

• the initial distribution should be an even function of the momenta 

• we assume the system is ergodically consistent over the relevant domain,  

• the dynamics must of course be time reversal symmetric, and 

• the dynamics should be smooth. 

• any time dependent external fields must have a definite parity under time 

reversal. 

 

 Since the time integrated dissipation function itself is extensive in the 

integration time and in the number of degrees of freedom we see that for macroscopic 

systems observed for macroscopic times the probability of observing negative 

dissipation “becomes so small that it may be regarded as practically an impossibility” 

– Maxwell, 1878.  It is interesting to note that Maxwell, recognized the importance of 

both time and system size in relation to observing violations of the Second “Law”.  

The quote reveals that Maxwell would not be surprised at the qualitative implications 

of the ESFT. However the ESFT gives a precise quantification of the matter. 

 It should be noted that the ESFT gives a relation between probabilities of 

time integrals of the dissipation function.  These time integrals start at the time when 

the dissipation function is defined (3.1.2).  The dissipation function is a functional of 

both the dynamical equations of motion that determine  S
tΓ = exp[−iL(Γ)t]Γ  from the 

initial phase  Γ  and also the initial distribution  f (Γ;0) .  These “initial” times need to 

be one and the same time. 



 6 

 

 The instantaneous dissipation function can be determined by differentiation 

of (3.1.2) as  

 

 

  

∂
∂t

ds Ω(SsΓ
0

t

∫ ) = Ω(StΓ)

= ∂
∂t
[ln( f (Γ;0)− ln( f (eiL(Γ)tΓ;0)− ds Λ(eiL(Γ)sΓ

0

t

∫ )]

= − 1
f (eiL(Γ)tΓ,0)

∂ f (eiL(Γ)tΓ;0)
∂t

− Λ(eiL(Γ)tΓ)

= − 1
f (eiL(Γ)tΓ,0)

∂eiL(Γ)tΓ
∂t

i
∂ f (eiL(Γ)tΓ;0)

∂Γ
− Λ(eiL(Γ)tΓ)

= − 1
f (eiL(Γ)tΓ,0)

iL(Γ)eiL(Γ)tΓ i
∂ f (eiL(Γ)tΓ;0)

∂Γ
− Λ(eiL(Γ)tΓ)

= − 1
f (eiL(Γ)tΓ,0)

eiL(Γ)t !Γ(Γ) i ∂ f (e
iL(Γ)tΓ;0)
∂Γ

− Λ(eiL(Γ)tΓ)

= − 1
f (StΓ,0)

!Γ(St ) i ∂ f (S
tΓ;0)

∂Γ
− Λ(StΓ)

  (3.1.7) 

 

The derivative on the left hand side of (3.1.7) is to be computed at a fixed point in 

phase space.  It we now set t = 0  we obtain an expression for the instaneous 

dissipation function: 

 

 
  
Ω(Γ) = − 1

f (Γ,0)
!Γ(Γ) i ∂ f (Γ;0)

∂Γ
− Λ(Γ) . (3.1.8) 

 

 The ESFT has generated much interest, as it shows how irreversibility 

emerges from the deterministic, reversible equations of motion [16].  Its proof is 

extremely simple and uses almost nothing but the time reversibility of the underlying 
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dynamics. Because its proof relies on so few assumptions, the ESFT is extremely 

general. It is valid arbitrarily far from equilibrium.  It provides a generalized form of 

the 2nd “Law” of Thermodynamics that can be applied to small systems observed for 

short periods of time.  It also resolves the longstanding Loschmidt Paradox.  The 

ESFT has been verified experimentally [17-24].  (See Section 9) 

 The form of the ESFT (3.1.6) applies to any valid ensemble/dynamics 

combination.  However the precise expression for  Ωt  given in (3.1.2) is dependent on 

both the initial distribution and the dynamics.  
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3.2  Second Law Inequality 

 We are now in a position to use the ESFT to derive a number of simple 

inequalities.  The derivation of the Second Law Inequality (SLI) from the ESFT 

provides what amounts to a proof of the Second “Law” of Thermodynamics.  The SLI 

shows that time averages (rather than instantaneous values) of the ensemble averaged 

dissipation are nonnegative.  This Second Law Inequality is valid for the 

appropriately time averaged dissipation but the ensemble averaged instantaneous 

dissipation may be negative for intermediate of times.   

 The Second Law Inequality states that[72]: 

 

 Ωt ≥ 0,∀t > 0  (3.2.1) 

 

The proof is almost trivial and is obtained by integration of (3.1.6): 

 

 

Ωt = dB p(Ωt = B)B−∞

+∞

∫

= dB p(Ωt = B)0

+∞

∫ B + dB p(Ωt = B)−∞

0

∫ B

= dB p(Ωt = B)B0

+∞

∫ − dB p(Ωt = −B)B
0

+∞

∫

= dB p(Ωt = B)0

+∞

∫ B(1− exp[−B]) ≥ 0.

 (3.2.2) 

 

 In linear irreversible thermodynamics it is asserted that the quantity called 

the spontaneous entropy production cannot be negative. Close to equilibrium the 

ensemble averaged dissipation is equal to the ensemble averaged entropy production 

(see §x.x). In an electric circuit close to equilibrium both quantities are equal to the 

product of the electric current times the voltage divided by the ambient temperature. If 

the circuit has a complex impedance there will necessarily be a phase lag between the 

applied voltage and the current.  This means that for an AC sinusoidal electric circuit, 

there will always be intervals within a cycle, within which the entropy production is 

negative.  This presents serious difficulties for linear irreversible thermodynamics, but 
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the Second Law Inequality is not presented with any difficulties by this matter.  The 

Second Law Inequality only asserts that the time integrated, average dissipation is 

positive.  The time integral begins at the initial time when the dissipation function 

itself was defined. The Second Law Inequality does not state that the ensemble 

averaged instantaneous dissipation cannot be negative.  

 Now let us look at (3.2.2) in more detail. For every value of B > 0  if 

p(Ωt = B) > 0 , ergodic consistency implies p(Ωt = −B) > 0 . This is because for 

every set of trajectories, the conjugate set of antitrajectories exists within the 

ostensible phase space domain. Furthermore as can be seen from (3.2.2), the 

fluctuation theorem shows p(Ωt = B) > p(Ωt = −B) . This in turn means that if the 

time integrated dissipation is nonzero for some infinitesimal set of initial points in 

phase space near  Γ : 

 

  Ωt (Γ) ≠ 0,Γ∈D, t > 0⇒ Ωtt >1 . (3.2.3) 

 
Definition  

A nonzero value for the time-averaged dissipation of an infinitesimal set of phase 

space trajectories anywhere in the ostensible phase space domain, implies a Strict 

Second Law Inequality (3.2.3). 

 We note that the Second Law Inequality (both strict and otherwise) has 

macroscopic consequences for the Fluctuation Theorem.  The Second Law Inequality 

has important consequences in widely varied applications such as atmospheric physics 

and aerodynamics. 
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3.3  Nonequilibrium Partition Identity 

 This Identity (also referred to as the Kawasaki identity, Kawasaki 

normalisation factor, Kawasaki function and the integral fluctuation theorem) was 

first implied for Hamiltonian systems by Yamada and Kawasaki in 1967, and for 

thermostatted systems driven by an external field, was explicitly noted by Morriss and 

Evans in 1984 [11,74,75].  The Nonequilibrium Partition Identity (NPI) is stated as: 

 

 exp[−Ωt ] = 1 . (3.3.1) 

 

 A very simple proof can be obtained using the ESFT given in eq. (3.1.6):   

 

 

exp[−Ωt ] = dB p(Ωt = B)exp[−B]−∞

+∞

∫

= dB p(Ωt = −B)
−∞

+∞

∫

= dB' p(Ωt = B')−∞

+∞

∫ = 1

 (3.3.2) 

 

 It is quite extraordinary that although the Second Law Inequality says the 

exponent of the NPI is negative on average, the rare instances when the dissipation 

function has a negative time average occur with such frequency that their 

exponentially enhanced effect ensures the average of the exponential is always unity. 

Trivially we observe that the NPI is still valid even in the case where 

 Ωt (Γ) = 0,∀Γ∈D .   

 We note that in order to observe the NPI in real experimental data we must 

be able to observe the antitrajectories that are conjugate to the most probable 

trajectories. In macroscopic systems this may be (as Maxwell already noted) 

impossible due to the extremely low probability of observing these events. 

 Although the ESFT implies the NPI, the converse is not true [75]. 



 11 

3.4  Integrated Fluctuation Theorem 

 
 The Fluctuation Theorem quantifies the probability of observing time-

averaged dissipation functions having complimentary values. The Second Law of 

Thermodynamics only states that the dissipation should be positive rather than 

negative.  Therefore, it is of interest to construct a fluctuation theorem that predicts 

the probability ratio that the dissipation function is either positive or negative.  

 In experimental situations where the statistical error is large and the 

ensemble sample sizes are small, it is useful to be able to predict the probability that 

the time averaged dissipation is negative.  The integrated form of the FT (IFT) gives a 

relationship that quantifies the probability of observing Second Law violations in 

small systems observed for a short time. 

 The ESFT, (3.1.6), can be written as 

 

 p(Ωt = −A)
p(Ωt = A)

= exp −At( ) . (3.4.1) 

 
We wish to give the probability ratio of observing trajectories with positive and 

negative values of 

� 

Ω t  and so we consider: 

 
 p+ (t) ≡ p(Ωt > 0), p− (t) ≡ p(Ωt < 0) . (3.4.2)  

 

Now 

 

 p− (t)
p+ (t)

=
dA p(Ωt = −A)

0

∞

∫
dA p(Ωt = A)0

∞

∫
. (3.4.3) 

 

Using (3.1.6): 

 

 p− (t)
p+ (t)

=
dA exp −At( ) p(Ωt = A)0

∞

∫
dA p(Ωt = A)0

∞

∫
. (3.4.4) 
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The right hand side of this equation is just the ensemble average of exp −Ωtt( )  

evaluated over that subset of trajectories for which the time-averaged dissipation is 

positive.  

 Again if we look at (3.4.3,4) in detail, we see that on the right hand side for 

every value of A > 0  p(Ωt = −A) < p(Ωt = A) . This in turn means that if the time 

integrated dissipation is non zero for any value of A: 

 

 
 
p(Ωt (Γ) = A) ≠ 0,⇒

p− (t)
p+ (t)

= exp −Ωtt( )
Ωt>0

<1 . (3.4.5) 

 
 From (3.4.4) we can also obtain the reciprocal relationship: 

 

 p+ (t)
p− (t)

= 1
exp −Ωtt( )

Ωt>0

≥1 . (3.4.6) 

 

where the equality only holds if p(Ωt = A) = 0,∀A .  

 Similarly, it can be shown that 

 

 p+ (t)
p− (t)

= exp(−Ωtt) Ωt <0
≥1, (3.4.7) 

 
where the equality only holds if p(Ωt = A) = 0,∀A .  

 We note that in actual experiments, where Ωt > 0 , equations (3.4.5) and 

(3.4.6) have much smaller statistical uncertainties than (3.4.7), because rarely 

observed trajectory segments with highly negative values of 

� 

Ω t  will have a large 

influence on the ensemble average in (3.4.7).  Consequently (3.4.7) should be avoided 

in numerical calculations or experiments.  

 Finally, we note that equation (3.4.6) can be used to show that 
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 p− (t) =
exp(−Ωtt) Ωt >0

1+ exp(−Ωtt) Ωt >0( ) , p+ (t) =
1

1+ exp(−Ωtt) Ωt >0( ) . (3.4.8) 

 
Obviously p− (t)+ p+ (t) = 1,∀t  and again p− (t) ≤ p+ (t),∀t . Furthermore one can 

only have equality if there is zero dissipation. Nonzero dissipation anywhere in the 

relevant phase space implies p− (t) < p+ (t),∀t ! 

 Thus, far all our equations refer to transient experiments. When t is large, 

corresponding asymptotic expressions can be determined for steady state averages 

[47]. 
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3.5  Functional Transient Fluctuation Theorem – leave for Debra 

 
 The FTs derived above predict the ratio of the probabilities of observing 

conjugate values of the dissipation function.  As given above, these theorems give no 

information on the probability ratios for any functions other than the dissipation 

function (3.1.2). In this section we describe how the FT can be extended to apply to 

arbitrary phase functions that have an odd parity under time reversal [46].   

 Let 

� 

φ(Γ)  be an arbitrary phase function and define the time average 

 

 
 
φi,t =

1
t

ds φ(SsΓi )0

t

∫ , (3.5.1) 

 
for a phase space trajectory:  S

sΓi . At t = 0 the phase space volume occupied by a 

contiguous bundle of trajectories for which 
 
Γi A < φi,t < A +δA{ }  is given by 

 δVΓ (Γ,0)  and at time t these phase points will occupy a volume 

 δVΓ (S
tΓ,t) = δVΓ (Γ,0)e

Λtt  whereΛt  is the time-averaged phase space compression 

factor along these trajectories – see (2.4.11). We denote φ (t) =< φi,t > i{ } , that is the 

average value of φi,t  over the set of contiguous trajectories,  Γi{ } . 

 If the dynamics is reversible, there will be a contiguous set of initial phases 

 Γi
*{ } , given by  Γi

* = MT (StΓi ) , that will occupy a volume  δVΓ (Γ
*) = δVΓ (S

tΓ) =  

 δVΓ (Γ)e
Λtt  along which the time-averaged value of the phase function is 

φi*,t = M
T (φi,t ) . For any  φi (Γ)  that is odd under time reversal, φi*,t = −φi,t . 

 The probability ratio of observing trajectories originating in an initial phase 

volume and its conjugate phase volume will be related to the initial phase space 

distribution function and the measure of the volume elements by equation (2.1.5).  

Therefore, from the definition of the dissipation function in (2.1.7) we obtain, 

 

 
 
lim
δVΓ→0

p(δVΓ (Γ,0))
p(δVΓ (Γ

*,0))
= exp Ωt (Γ)t⎡⎣ ⎤⎦ . (3.5.2) 
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It is possible that there are non-contiguous bundles of trajectories for which 

 
Γ A < φt (S

sΓ < A +δA{ } , and since these bundles may have different values Ωt  the 

probability ratio (equation (3.5.2)) may differ for each bundle. The probability of 

observing a trajectory for which A < φt < A +δA , is obtained by summing over the 

probabilities of observing these m = 1,M non-contiguous volume elements, 

 δVΓ ,m (Γ(0),0) . If the phase function is odd under time reversal symmetry, then the 

ratio of the probability of observing trajectories for which A < φt < A +δA  to the 

probability of observing conjugate trajectories, for which −A < φt < −A +δA  is,  

 

 

 

p(φt = A)
p(φt = −A)

=
dΓ f (Γ;0)

φt (Γ)=A
∫

dΓ* f (Γ*;0)
φt (Γ

* )=−A
∫

=
dΓ f (Γ;0)

φt (Γ)=A
∫
dΓ f (Γ;0)

φt (Γ)=A
∫ e−Ωt (Γ)t

= e−Ωtt

φt=A

−1

 (3.5.3) 

 
where the notation ... φt =A  refers to the ensemble average over (possibly) non-

contiguous trajectory bundles for which φt = A . Equation (3.5.3) gives the ratio of the 

measure of those phase space trajectories for which φt = A  to the measure of those 

trajectories for which φt = −A.  This is the Functional Transient Fluctuation Theorem 

(FTFT) for any phase variable φt  that is odd under time reversal. Provided it has a 

definite parity under time reversal symmetry, the actual form of φt  is quite arbitrary.  

If the phase variable is even, then we obtain the trivial relationship 

 

 e−Ωt t

φt =A

−1
= p(φt = A)
p(φt = A)

= 1  (3.5.4) 
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3.6 The Covariant Dissipation Function 
 

 As we have seen already the dissipation function is a rather important function 

in statistical mechanics.  In later chapters we will see that it plays a key role in almost 

all aspects of nonequilibrium statistical mechanics – in response theory and in 

understanding the process of relaxation towards equilibrium.  It is defined in terms of 

the initial distribution of states and also by the dynamical equations of motion. 

 What happens to the dissipation function if we redefine the dissipation function 

in terms of the time evolving N-particle phase space distribution function rather than 

the initial distribution?  The time covariant dissipation function could be written as, 

 

 Ωτ (S
t1Γ,t1) ≡ ln

f (St1Γ,t1)
f (MTSt1+τ Γ,t1)

⎛
⎝⎜

⎞
⎠⎟
− Λ(SsΓ)ds

t1

t1+τ∫  (3.6.1) 

 

where dissipation function is integrated for a time τ  but defined with respect to the 

phase space density at time t1  rather than at the usual time zero.  By constructing the 

Evans-Searles FT at time t1  and allowing this time to increase without bound, we 

could construct an exact steady state FT for thermostatted driven systems that evolve 

to nonequilibrium steady states. This steady state FT would not be asymptotic unlike 

the FT discussed in §6.9??. 

 However, there is a serious problem posed by this scenario.  The time integrated 

dissipation function is related to a number of important physical properties.  We have 

only met a small number of these properties thus far in this book.  This means that 

there must be some kind of invariance properties satisfied by the dissipation function.  

So you really can’t constantly redefine the quantity. 

 From the definition (3.6.1) we see that, 

 

 

lim
δVΓ→0

p[δVΓ (S
t1Γ,t1)]

p[δVΓ (M
TSt1+τ Γ,t1]

= lim
δVΓ→0

f (St1Γ,t1)δVΓ (S
t1Γ)

f (MTSt1+τ Γ,t1)δVΓ (M
TSt1+τ Γ)

= exp[Ωτ (S
t1Γ,t1)]

(3.6.2) 
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Now all the trajectories that arrive in δVΓ (S
t1Γ)  at time t1  started out within δVΓ (Γ)  

at time zero.  All the trajectories that arrive at δVΓ (S
t1+τ Γ)  at time t1 + τ  would have 

continued on to δVΓ (S
2t1+τ Γ)  at time 2t1 + τ .  Furthermore all trajectories in  

δVΓ (S
2t1+τ Γ)  at time 2t1 + τ  started within δVΓ (Γ)  at time zero. So in fact, 

 

 lim
δVΓ→0

p[δVΓ (S
t1Γ),t1]

p[δVΓ (M
TSt1+τ Γ,t1)]

= lim
δVΓ→0

p[δVΓ (Γ),0]
p[δVΓ (M

TS2t1+τ Γ),0]
. (3.6.3) 

 

For the antitrajectories, going backwards in time from t1  to zero is like going forward 

in time an additional amount t1  from time t1 + τ , and therefore, 

 
  Ωτ (S

t1Γ,t1) = Ω2t1+τ
(Γ,0)  (3.6.4) 

 

The antitrajectories at time zero to those within δVΓ (Γ)  are the time reversal mapped 

phases to those δVΓ (S
2t1+τ Γ) . 

 So there is no new information contained within the time covariant dissipation 

function. It does imply an important result however. There is no time-local non-

asymptotic ESFT for steady states with time reversible deterministic dynamics. 
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3.7  The Definition of Equilibrium Distributions 
 
“If a system is very weakly coupled to a heat bath at a given ‘temperature’, if 

the coupling is indefinite or not known precisely, if the coupling has been on 

for a long time, and if all the ‘fast’ things have happened and all the ‘slow’ 

things not, the system is said to be in thermal equilibrium.” 
R. P. Feynman, Statistical Mechanics, a series of lectures, 1972. 

 

 One of the aims of this book is to understand the true nature of thermal 

equilibrium. We will return to discuss the nature of equilibrium many times in this 

book; each time with a little more knowledge than before, until at the end of Chapter 

5 we will be able to demonstrate that the definition we are about to introduce, indeed 

encompasses each aspect of the qualitative notion of equilibrium given by Feynman in 

the quote above.  

 It may seem somewhat odd that we should introduce a definition of 

equilibrium in a chapter that is mostly devoted to discussing nonequilibrium systems. 

However you cannot really understand equilibrium without first knowing how 

nonequilibrium systems relax towards equilibrium. 

 

Definition:   

An equilibrium system is characterized by a N-particle phase space distribution and a 

dynamics for which, over the phase space domain D, the time integrated dissipation 

function is identically zero: 

 

 

 

Ωeq,t (Γ) = 0,∀Γ∈D,∀t > 0,

⇒ Ωeq,tt( ) = 0,∀t > 0

⇒ peq,+ (t) = peq,− (t),∀t > 0

  (3.7.1) 

 

Although this is a convenient definition of equilibrium we do not yet know whether 

equilibrium systems exist or whether such systems are stable.  It turns out that the 

answer to both these questions is yes but these answers will only be given in the next 

chapter. 
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We have already seen that the only way Ωt = 0  is if the instantaneous dissipation 

and the time averaged dissipation are both zero everywhere (3.7.1), Consequently the 

ensemble averaged time integrated dissipation is zero if and only if the time integrated 

dissipation is zero everywhere in the ostensible phase space: 

 

 
 
Ωt eq = 0⇔Ωt (Γ) = 0,∀Γ∈D,∀t > 0  . (3.7.2) 

 

Definition  

This equation is called the Second Law Equality. 

 A number of corollaries follow immediately. From (3.7.1) we observe that 

for equilibrium systems that are ergodically consistent over D, the probability of 

observing every infinitesmal set of phase space trajectories is equal to the probability 

of observing, at time zero, the conjugate set of anti-trajectories: 

 

 
 

peq (δVΓ(Γ,0))
peq (δVΓ(M

TStΓ,0))
= 1,∀Γ∈D,∀t   (3.7.3) 

 

The equilibrium state is therefore time reversal symmetric. 

 For instance, if we compute the Lyapunov spectrum  {λi;i = 1,...,d;Γ(0)} for 

a system with time reversible dynamics, for a trajectory originating at  Γ(0) , we know 

that for any steady system (nonequilibrium steady state or an equilibrium state) the 

spectra have the property that if we reverse the direction of time, the largest most 

positive exponent will be -1 times the smallest most negative exponent of the original 

system If we denote the exponents of the time reversed system as, 

 {λi
*;i = 1,...d;Γ*(0)} , we will have, 

 

 

  λi
*(Γ*(0)) = −λd−i (Γ(0)) ,  ∀Γ(0)∈D . (3.7.4) 

 

(Note: d is the number of nonzero Lyapunov exponents in the system.)  
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 Now, if we further assume that the system is an ergodic equilibrium system 

we see that the spectrum must be independent of the initial phase  Γ(0)  or  Γ
*(0) . This 

means that the spectrum for the trajectory must be the same as the spectrum of the 

anti-trajectories.  At equilibrium therefore the time reversal map transforms the 

spectrum into itself. This means that at equilibrium  

 

  λeq,i (Γ(0)) = −λeq,d−i (Γ(0)),∀Γ(0),i  (3.7.5) 

 

This is termed the Conjugate Pairing Rule for equilibrium systems.  

 All ergodic equilibrium systems have Lyapunov spectra that, apart from any 

unpaired zero exponents, consist of conjugate pairs of exponents that each sum to 

zero. The conjugate paired exponents define sets of 2-dimensional areas that are each 

preserved in measure, by the natural dynamics. The Kaplan-Yorke dimension of an 

ergodic equilibrium system is equal to the number of Lyapunov exponents (including 

unpaired zero exponents) which is also the ostensible dimension of phase space. For 

these systems the ostensible phase space volume is at least on average, preserved by 

the natural dynamics. 

 Thus far we have only discussed equilibrium systems in the context of time 

integrated dissipation. Later in Chapter 4 we will talk about equilibrium in the context 

of instantaneous dissipation. At the moment we do not know whether if 

 Ωt (Γ) = 0,∀Γ∈D⇒Ωt+τ (Γ) = 0,∀Γ∈D,t,τ > 0 . These questions and others will 

be answered in the next chapter. 
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3.8  Conclusion 
 
 One often sees in the historical and even in the recent literature, statements 

that imply the irreversibility results from the special nature of the initial state.  For 

example:  

 

“it is in any case impossible on the basis of present theory to carry out a mechanical 

derivation of the second law without specializing the initial state” E. Zermelo 

translated S G Brush Kinetic theory Vol 2 Irreversible processes pp 194 – 202 

Pergamon Press (1966). 

or, 

“I have called it one of the most brilliant confirmations of the mechanical view of 

Nature that it provides an extraordinarily good picture of the dissipation of energy, as 

long as one assumes that the world began in an initial state satisfying certain 

conditions. I have called this state an improbable state.” L Boltzmann “A word from 

mathematics to energism” (1896). 

 

“The time-asymmetry comes merely from the fact that the system has been started off 

in a very special (i.e. low entropy) state” p408 “The Emperor’s new mind”, Roger 

Penrose Oxford University Press 1989. 

 

 With respect to the Fluctuation Theorem the initial state need not be a state 

of particularly low probability. Equation (3.1.1) is a rather general distribution 

function and the FT holds for all distributions subject to the rather mild assumptions 

given above. Nor does it matter whether the initial distribution of states is what is 

called high or low entropy, the probability of positive dissipation is exponentially 

more likely (in time and in the number of degrees of freedom) than the probability of 

complementary negative dissipation (3.1.6). Of course if there are no dissipative fields 

and the initial distribution is an equilibrium distribution that the probability ratio 

predicted by the FT is unity for all averaging times. 

 

What was never realized until the proof of the Fluctuation Theorem was a rather 

simple fact.  Loschmidt’s objection (that for every trajectory there exists a conjugate 

anti trajectory and that summing over all such conjugate pairs implies that 
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irreversibility is impossible), is simply wrong.  One must instead, consider not 

individual phase space trajectories but the probabilities of infinitesmal sets of 

trajectories having specified properties within some tolerance. It is this probability 

ratio that gives the dissipation function its meaning. It makes no mathematical sense 

to think that individual conjugate trajectory pairs somehow cancel each other out.  

Only when the system is at equilibrium do the probabilities of observing sets of 

trajectories and their conjugate antitrajectories, become equal. 

 


